If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-8=53
We move all terms to the left:
9x^2-8-(53)=0
We add all the numbers together, and all the variables
9x^2-61=0
a = 9; b = 0; c = -61;
Δ = b2-4ac
Δ = 02-4·9·(-61)
Δ = 2196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2196}=\sqrt{36*61}=\sqrt{36}*\sqrt{61}=6\sqrt{61}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{61}}{2*9}=\frac{0-6\sqrt{61}}{18} =-\frac{6\sqrt{61}}{18} =-\frac{\sqrt{61}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{61}}{2*9}=\frac{0+6\sqrt{61}}{18} =\frac{6\sqrt{61}}{18} =\frac{\sqrt{61}}{3} $
| 1/2(a)=10 | | 40=2/m | | 2+5n=47 | | 3.x=172 | | 720/x=180 | | d2+11d=0 | | 448=28x | | 0.2x+0.5(13−x)=4.7 | | 3a+101-4a-30=108-8a-100 | | 23=g/12 | | -6=(3x-2) | | 0.07y+0.10(y+5,000)=1,350 | | 231=7x | | 0.08y+0.09(y+4,000)=870 | | 0.09x+0.11(x+200)=102 | | 25=b/29 | | 234=71-x | | 2g^2−16g=0 | | 2g2−16g=0 | | 406=29x | | C+34=3b | | 175=7x | | 3.5x+56.9=14.0-10.8x | | -9x-9=108 | | 9x^2+8=53 | | 14÷n=24 | | 8+2y-7=7y+9-4y | | 36/b=9 | | 6x-(-8x+1)=-85 | | 4(x-2)=3(x-8) | | -2(x+5)+17=12-3x | | 1/2x+2=1/2+1 |